1832

SEMIEMPIRICAL SCF MO STUDY OF METHYLPYRIDINES

J.KUTHAN^a, N.V.KOSHMINA^b and V.SKÁLA^a

^a Department of Organic Chemistry, Institute of Chemical Technology, Prague 6 ^b Department of Physical Organic Chemistry, A. A. Ždanov State University, Leningrad, USSR

Received April 10th, 1970

 π -Electron structure of monomethylpyridines II-IV and their protonated forms $II.H^+-IV.H^+$ was examined with the aid of Pople version of the SCF-MO-LCAO method. The calculated characteristics of π -electron distribution were confronted with the corresponding HMO quantities, chemical reactivity and PMR data. The electronic absorption spectra of the studied compounds were interpreted with the aid of LCI method.

Recent HMO studies of methylpyridines demonstrated that surprisingly good interpretation of various experimental data, in particular chemical reactivity, can be achieved by using this very simplified approach¹⁻⁷. It was thus interesting to ascertain how this interpretation would be changed when the more perfect type of self-consistent MO's would be used in place of Hückel ones.

In the present work we wish to report the results of SCF calculations of monomethylpyridines II-IV and corresponding protonated forms $II \cdot H^+ - IV \cdot H^+$. The results obtained were confronted with the analogous data for pyridine (I) and its protonated form $I \cdot H^+$.

CALCULATIONS

The SCF models of the studied compounds were calculated with the use of the Pople-Pariser-Parr version⁸⁻¹⁰. The effect of methyl group on π -electron system was estimated by means of hyper-conjugation model¹¹. (The heteroatom model was not applied here since preliminary SCF

Collection Czechoslov. Chem. Commun. /Vol. 36/ (1971)

Semiempirical SCF MO Study of Methylpyridines

calculations applied showed that the use of parametrization similar to that employed in the work¹² leads to the values of theoretical electronic transitions in compounds II-IV which differ from those experimentally found by 1.2 to 6.0 eV). Hückel molecular orbitals with corrected resonance integrals were taken as the starting approximation. Hyperconjugation model of methyl group (see ref.¹³) was used in obtaining HMO data needed for the comparison with SCF calculations. The parametrization used is given in Table I. The following geometry of compounds I-IV was considered in the SCF calculations: the idea heterocyclic ring with the C—C and C—N bond length 1.4 Å and the bond angles 120°, the C—CH₃ bond length 1.52 Å and the C—H bond length 1.1 Å.

TABLE I Parameters for SCF and HMO Calculations

	SC	CF				HMO .	
Atom	I eV	A eV	Lit.	h _X ^a	Bond	k _{CX}	Lit.
$C(sp^2)$	11.16	0.03	14	0	C—N	1.0	13
$N(sp^2)$	14.12	1.78	14	0.5	$C-N^{+b}$	1.0	13
$N^+ (sp)^2$	13.65	2.53	14	2.0	C-CH3	0.8 ^c	13
C(H ₃)	11.42	0.58	15	-0.1	C—(H ₃)	3.0°	13
$H_3(C)$	9.50	0	15	-0.5			13

^a For null iteration in all SCF calculations $h_{\rm X} = 0$. ^b In protonated forms. ^c For SCF calculation $k_{\rm C-(H_3)} = 0.51$ and $k_{\rm C-(H_3)} = 1.25$ (ref.¹⁵).

FIG. 1

Plot of Self-Consistent Molecular Orbital Energies against Hückel MO Energies for Compounds I-IV and I. $H^+ - IV$. H^+

Collection Czechoslov. Chem. Commun. /Vol. 36/ (1971)

SCF ^a	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	- 0.8 - 1.4 - 1.0 - 10.4 - 10.4 - 10.4 - 1.0 - 0.8 - 1.0 - 1.0 - 0.8 - 1.0 - 1	11 - 0 11 - 1 11 - 1	922	0.889 1-350 1-350 1-9067 1-9067 1-9067 1-906 0-944 1-161 1-161 1-161 1-161 1-161	- 0.913 - 1.473 - 10.100 - 10.955 - 10.955 - 10.955 - 0.948 1.505 1.505 1.505	- 0.906 - 1:345 - 10.072 - 10.827 - 10.827 - 10.827 - 0.845 - 0.845 - 0.939 1.146 14121	- 0.936 - 1.462 - 10.102 - 10.879 - 10.879 - 0.509 - 0.509 - 1.450 1.450 1.6268	- 0.783 - 1:416 - 10.311 - 10.494 10.5.042 - 0.864 1.000 - 0.84 1.084 1.084 1.1084	- 0.812 1:527 1:5243 10:343 10:341 10:4860 0:538 1:000 1:397 16:295
	W^{b} Total π_{-1}			532 447 1118 1118 500 000 507 698 698 698 ain β-unit	1-350 10-067 10-067 10-064 10-044 0-850 0-944 1-161 14-132 8.	$\begin{array}{r} -1.473 \\ -10.100 \\ -10.955 \\ 104.860 \\ -1.016 \\0.530 \\ 1.948 \\ 1.905 \\ 16.307 \\ 16.307 \end{array}$	- 1:345 - 10:072 - 10:072 105:034 - 10:16 - 0:845 - 0:845 1:146 1:14:121	1.462 10.102 10.875 104.857 1.016 0.509 0.942 1.450 16.268	- 1:416 - 10:311 - 10:311 - 10:424 105:042 - 1:000 - 0:864 1:084 14:128	- 1.527 - 10:343 - 10:541 104:860 - 1:000 - 0:538 1:000 1:000 1:907 16:295
	2 μν ^b 1 1 μν ^b 2 ν ^b Total π-ι		63 -110 111 - 110 111 - 111 - 111 111 - 1	447	10-06/ 10-904 10-904 1-016 0-850 0-944 1-161 14-132 8.	$\begin{array}{r} -10\cdot100\\ -10\cdot100\\ 104\cdot860\\ -1\cdot016\\ -0\cdot530\\ 0\cdot948\\ 1\cdot505\\ 16\cdot307\end{array}$	$\begin{array}{r} -10 \cdot 0/2 \\ -10 \cdot 0/2 \\ 105 \cdot 0.24 \\ -1 \cdot 016 \\ -0 \cdot 845 \\ 0 \cdot 939 \\ 1 \cdot 146 \\ 1 \cdot 4 \cdot 121 \\ 1 \cdot 4 \cdot 121 \end{array}$	- 10-102 - 10-879 10-852 - 10-852 - 0-509 0-942 1-450 16-268	- 10-494 - 10-494 100-494 - 100-404 - 0.864 1-000 1-004 1-084 14-128	-10:345 -10:541 10:641 10:646 - 1:000 - 0:538 1:000 1:397 16:295
	2 <i>W^b</i> 1 1 <i>W^b</i> <i>W^b</i> <i>V</i> . ^b Total π -t	-11.0. - 1.00 0.8.0 - 0.8.5 1.1.0 8.5. iectron energi	8 -11- 2 79- 10 1 - 1- 11 - 1 - 1- 57 1- 10 1- 10 1- 10 - 1- 10 - 1- 10 - 1- 10 - 1- 10 - 1- 10 - 10 -	118 909 1 507 507 - 507 - 698 · a in <i>β</i> -unit	10-904 05-043 1-016 0-850 0-944 1-161 14-132 s.	- 10-955 104-860 - 1-016 - 0-530 0-948 1-505 16-307	- 10-27 105:034 - 1016 - 0-845 1-146 1-146 1-146	-10-679 104-852 - 0-509 - 0-942 1-450 16-268	-10-474 105-042 - 0.864 1-000 - 0.864 1-000 1-084 14-128	-10:541 104:860 - 0:538 1:000 1:397 16:295
	$\frac{2}{1}'$ $\frac{1}{W^b}$ $\frac{2}{W^b}$ V. ^b Total π^{-t}	- 1-00 - 0-8 1-10 8-5, 1-10 8-5, 1-00 lectron energi	00 - 1- 14 - 0- 15 1- 15 1- 19 10- 19 10- 19 10- 19 10- 10- 19 10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	000	1.016 0.850 0.944 1.161 14.132	- 1-016 - 0-530 0-948 1-505 16-307	- 1.016 - 0.845 0.939 1.146 14.121	- 1.016 - 0.509 0.942 1.450 16.268	- 1.000 - 0.864 1.000 1.084 14.128	- 1.000 - 0.538 1.000 1.397 16.295
HMO ^e	1 2 <i>W^b</i> V. ^b Total π-t	0.8. 1.10 1.11 8.5. lectron energi	11 - 0. 11 - 0. 12 - 1. 137 - 1. 19 10. 10. 10. 10. 10. 10. 10. 10.	507 507 698 a in β-unit:	0-850 0-944 1-161 14-132 8.	- 0.530 0.948 1.505 16:307	- 0.845 0.939 1.146 14.121	0.509 0.942 1.450 16·268	- 0.864 1.000 1.084 14.128	- 0.538 1.000 1.397 16.295
	1 2 <i>W^b</i> V. ^b Total π-ι	1-00 1-10 8-55 lectron energi	0 1- 17 1. 19 10- es. ^c All dat	000 507 698 . a in <i>β</i> -unit:	0.944 1.161 14.132 8.	0-948 1-505 16-307	0-939 1-146 14-121	0-942 1-450 16-268	1-000 1-084 14-128	1.000 1.397 16.295
	$\frac{2}{W^b}$	1.10 8-55 lectron energi	1. 1. 19 10 es. ^c All dat	507 698 - a in <i>β</i> -unit:	1.161 14.132 s.	1-505 16-307	1-146 14-121	1-450 16-268	1.084	1.397 16-295
	W ^b V. ^b Total π-ε	8-55 lectron energi	9 10 es. ^c All dat	698 č.	14·132 s.	16-307	14.121	16.268	14.128	16-295
	ν. ^b Total π-ε	lectron energi HMO Models	es. ^c All dat	a in eta -unit:						
Compound		. FSI	F in position	E				F ^{HMO} in pos	ition	
pinodiioo	7	3	4	S	9	2	3	4	5	6
I	0-414	0.398	0-401	0.398	0-414	0-409	0.398	0.402	0.398	0-409
11	0.268	0.406	0.400	0.400	0.413	0.250	0-409	0-401	0.400	0.409
111	0.422	0.254	0.409	0.398	0.415	0.420	0.238	0-412	0-397	0-411
ΛI	0-413	0.405	0.256	0.405	0-413	0-407	0-407	0.245	0-407	0-407
<i>I</i> . H ⁺	0-416	0.398	0.403	0.403	0.416	0-515	0-389	0.439	0.389	0-515
И.Н ⁺	0-269	0-406	0.402	0.399	0.416	0.354	0-403	0.434	0.389	0.516
<i>Ш</i> . H ⁺	0.425	0-254	0.411	0.397	0-417	0-529	0-229	0-447	0-387	0.515
4		0.404	0.258	0.404	0.416	0.510	0.397	0.285	0.397	0.510

TABLE IIHMO and SCF π -Electron Energies for Compounds Studied

Collection Czechoslov. Chem. Commun. /Vol. 36/ (1971)

1834

that the center of the ring corresponded to the center of coordinate system, either pseudomethyl group $-C \equiv H_3$ or the heterocyclic nitrogen being oriented in the positive or in the negative direction of the axis y, respectively. Theoretical quantities were converted into physical units by using $\beta = -2.388$ eV.

RESULTS AND DISCUSSION

Comparison of SCF with HMO Data

In Table II are given total π -electron energies, W^{SCF} and W^{HMO} , the energies of the two highest occupied MO's, k_1 and k_2 and of the two lowest unoccupied MO's, k_1 , and k_2 . The comparison of all the SCF orbital energies with analogical data obtained by the simple HMO method (Fig. 1) shows that there exists a significant parallelity between both quantities; only the energy difference between the bonding and the antibonding MO's is somewhat greater in the SCF approximation. In Figs 2 and 3 are compared the SCF and HMO molecular diagrams of 2-methylpyridine (II) and 2-methylpyridinium (II . H⁺). It can be stated that the differences between both versions of MO method, shown by π -electron distributions, are for the neutral molecule of pyridine (II) quite insignificant (Fig. 2). A more significant difference can be seen in the case of the cation II . H⁺ (Fig. 3). We believe this difference can be accounted for by the fact that the value of parameter $h_N = 2\cdot 0 \sec^{13}$ for HMO models of protonated forms (see "Calculations") is too high. It seems that a more suitable value would be $h_N = 1\cdot5$. The situation in the SCF and HMO models of compounds I, I . H⁺, III . H⁺, IV and IV . H⁺ is quite analogical.

FIG. 2 Molecular Diagrams of 2-Methylpyridine (II)

Fig. 3

Molecular Diagrams of 2-Methylpyridinium $(II \cdot H^+)$

Collection Czechoslov. Chem. Commun. /Vol. 36/ (1971)

Chemical Reactivity

The systematic confrontation of various experimental data relating to the reactivity of the heterocyclic ring in compounds I - IV with different HMO indices of chemical reactivity was for compounds II - IV and other methylpyridines performed in our previous studies^{4,6}. A qualitative nature of most experimental data on heterolytic reactions (see references in the work⁴) prevented us from estimating the suitability of SCF and HMO indices. In contrast, substantially more extensive collection of experimental data^{3,16-18} on radical substitutions of bases I-IV and conjugated acids I, $H^+ - IV$, H^+ seems to be suitable for this purpose. As it was shown earlier⁵, the use of hereroatom model¹³ of methyl group within the framework of the simple HMO method leads to a statistically significant correlation of free valence F with logarithms of partial rate factor log k for phenylation of compounds $I - IV^{3,16,17}$ not however with analogical experimental data for the identical transformations studied in the work¹⁸. Fig. 4 demonstrates that essentially "homogeneous" correlation is preserved even in case where the hyperconjugation model of methyl group¹³ is applied (log $k = 28.04F^{HMO} - 11.13$; r = 0.9559 for 13 couples). A similar correlation with free valence F^{SCF} is shown in Fig. 5 (log $k = 22.98 F^{\text{SCF}} - 9.09$; r = 0.8957). The latter correlation is not so good as the former one, in spite of hitherto experience that the use of SCF reactivity indices in place of HMO ones results in a better agree-

Plot of Logarithms of Partial Rate Factors of Radical Phenylation^{3,16,17} of Bases I-IVagainst Free Valences Calculated by HMO Method $(N_{max} = \sqrt{3}, hyperconjugation$ model of methyl group)

Plot of Logarithms of Partial Rate Factors of Radical Phenylation^{3,16,17} of Bases I-IVagainst Free Valences Calculated by Pople's SCF Method

 $N_{\text{max}} = \sqrt{3}$, hyperconjugation model of methyl group. Positions: $\alpha \ominus$, β and $\gamma \circ$.

Semiempirical SCF MO Study of Methylpyridines

ment with experimental data (cf. refs^{19,20}). Furthermore, the experimental data are partially divided into those corresponding to positions in the vicinity of the nitrogen heteroatom (α) and those for the other positions (log $k(\alpha) = 37\cdot14F^{SCF} - 15\cdot02$; r = 0.9085 for 5 couples and log $k(\beta, \gamma) = 39\cdot99F^{SCF} - 15\cdot91$; r = 0.9570 for 8 couples).*

Evidently better results are obtained with SCF indices in the case of phenylations taking place in acidic medium¹⁸, in which the substitutions of the forms $I \cdot H^+$ –

TABLE IV

n-Electron Densities on Methyl Groups in SCF Models of Methylpyridines II-IV and Their Protonated Forms $II \cdot H^+ - IV \cdot H^+$

Compound	<i>q</i> _{C(H3)}	<i>q</i> _{H₃(C)}	Δq	$\log k^a$
II	1.120	0.870	0.250	7.73
<i>II</i> .H ⁺	1.120	0.869	0.221	_
III	1.120	0.876	0.244	5.62
III , H^+	1.121	0.875	0.246	_
IV	1.122	0.869	0.253	8.88
$IV.H^+$	1.123	0.868	0.255	_

⁴ Logarithm of rate constant of protodetritiation with the mixture sodium methylate-methanol (White and Lazdins⁷).

TABLE V Comparison of the Basicity of Compounds I - IV with the SCF and HMO Data

Base	pKa ^a	pK _a ^b	$q_{\rm N}^{\rm SCF}$	$q_{\rm N}^{\rm SCF}$	q _N HMO	$q_{\rm N}^{\rm HMO}$	∆W ^{SCF} (eV)	Δ W ^{HMO} (β)
I	5.30	5.17	1.2252	1.249	1.195	1.622	0.1829	2.149
II	5-95	5-97	1.2301	1.255	1.216	1.635	0.1831	2.175
Ш	5.85	5.68	1.2263	1.250	1.194	1.621	0.1820	2.147
IV	6-10	6.02	1.2298	1.254	1.209	1.631	0.1810	2.167

^a Ref.²¹, ^b Ref.²²,

• It cannot be ruled out that the mentioned splitting of data F^{SCF} is the consequence of the different value of N_{max} in Coulson's definition of free valence for positions α .

FIG. 6

Plot of Logarithms of Partial Rate Factors of Radical Phenylation¹⁸ of Ions I. $H^+ - - IV$. H^+ against Free Valences Calculated by HMO Method

 $N_{\rm max} = \sqrt{3}$, hyperconjugation model of methyl group.

Plot of Logarithms of Partial Rate Factors of Radical Phenylation¹⁸ of Ions I, $H^+ - - IV$, H^+ against Free Valences Calculated by Pople's SCF Method"

 $N_{\text{max}} = \sqrt{3}$, hyperconjugation model of methyl group. Positions: $\alpha \ominus$, β and $\gamma \circ$.

Fig. 8

Comparison of Electronic Spectrum of 3-Methylpyridine (*III*) with Theoretical Data Calculated by LCI-SCF-MO-LCAO Method

Data for free base III are represented by full lines, those for protonated form III. H⁺ by broken lines.

Plot of Proton Coupling Constants of *meta*-Interaction in PMR Spectra of Pyridine Bases²³ I-IV against Corresponding π -Bond Orders

O SCF data, ⊖ HMO data.

-IV. H⁺ are to be expected (log $k = 42.54F^{SCF} - 16.85$; r = 0.9400 and log $k = 5.48F^{HMO} - 1.91$; r = 0.8270 for 8 couples, see Figs 6 and 7). The values of the F^{HMO} and F^{SCF} used are given in Table III.

The difference between the calculated values of formal π -electron density on the carbon atom and on the hydrogen atoms of methyl group $\Delta q = q_{C(H_3)} - q_{H_3(C)}$ was considered in previous paper⁴ as the index describing the liability of these groups to prototropic transformations; the reactivity of methyl groups is expected to decrease in the order II > IV > III. In recent kinetic studies⁷ of protoetritiation of methylpridines II - III the following sequence was established: IV > II > III. This sequence is in harmony with that predicted by Δq values calculated by SCF method (Table IV).

Basicity

In Table V are compared pK_a values for bases I - IV (refs^{21,22}) with π -electron densities on the heteroatoms, q_N and q_{N^*} , and with the differences between the π -electron energies of protonated and unprotonated forms $\Delta W = W^* - W$. It is evident that only the values of q_N^{SCF} and q_N^{SCF} are in harmony with the experimental finding that methylpyridines II - IV exhibit higher basicity than the parent compound (I). If one allows for a possible steric effect of methyl group in 2-methylpyridine (II) on the pK_a value, the sequence of the SCF densities compares well with experimental data.

Physical Properties

Electronic spectra. The electronic spectra of aqueous solutions of compounds I-IV measured in the neutral and acidic medium exhibit two absorption bands which can be assigned to $\pi \to \pi^*$ transitions of the heteroaromatic π -sextet. The comparison of the experimental with the theoretical data obtained by LCI method using SCF-MO is presented in Table VI. Is is evident that the theoretical data account well for the following experimental facts: a) a weak red shift of the maxima of both absorption bands brought about by introduction of methyl group on the pyridine ring, and b) low sensibility of the positions of the bands towards the substituent position and protonation. Graphical comparison of the course of the extinction curves for 3-methylpyridine (III) and its protonated form III. H⁺ with LCI data is represented in Fig. 8. Summarizing, it can be stated that the better agreement is achieved between the theoretical and experimental energies than between the analogical intensity data (Table VI). Similarly to the pyridine (I) and its cation I. H⁺, the single electron transition between frontier MO's $1 \rightarrow 1'$, *i.e.* the N \rightarrow V₁ transition, is of the greatest weight in the lowest frequency band in the electronic spectra of methylderivatives II - IV and $II \cdot H^+ - IV \cdot H^+$. This fact may, at least, to a certain extent, account for the finding that in case of methylpyridines there TABLE VI

Theoretical and Experimental Electronic Spectra of Methylpyridine I-IV and Their Protonated Forms I. $H^+ - IV$. H^+

Symbols used: E band maximum energy, ε molar absorptivity, f oscillator strength.

Compound -		LCI-SCF-MO	O calculation		Experi	ment ^a
Compound	Ε	$\log f$	$i - j^b$	% ^c	E	log ε
I	39.29	-1.237	1 - 1'	69.68	38.99	3.470
			2 - 2'	30.09		
	50.17	-2.518	1 — 2'	54.64	50.76	3.643
			2 - 1'	45.16		
1.H ⁺	39-21	-1.160	1 - 1'	71.56	39.29	3.750
			2 - 2'	28.19		
	49.85	- 3.590	2 - 1'	51-98	50.00	3.545
			1 2'	47.79		
11	38.51	-1.004	1 - 1'	68.05	38.17	3.670
			2 — 2′	21.64		
	47.76	-0.260	1 — 2'	63.88	49.75	3.653
			2 – 1′	22.81		
			1 - 1'	9.90		
И.Н+	38-37	-0.923	1 - 1'	71.26	38.31	3.899
			2 — 2'	20.32		
	47.62	-0.624	1 - 2'	61.09	49.26	3.614
			2 – 1'	27.93		
			1 - 1'	7.21		
III	38.62	-1·128	1 - 1'	64.08	38.10	3.583
			2 — 2'	20.63		
			2 - 1'	5.48		
	47.55	0 ∙590	1 - 2'	62.46	49.75	3.690
			2 - 1'	23.75		
			1 - 1'	12.47		
Ш.н+	38.52	-1.021	1 - 1'	66.93	38.02	3.804
			2 - 2'	19-39		
			2 - 1'	4.86		
	47.43	-0.674	1 - 2'	59.90	48.31	3-601
			2 - 1'	28.25		
			1 - 1'	10.51		
IV	38.87	1.320	1 - 1'	66.80	39.45	3.400
			2 - 2'	26.51		
			3 - 2'	5-51		
	47.12	-0.522	2 - 1'	87.05	49-38	3.635
			1 - 2'	11.32		
<i>IV</i> .H ⁺	38.81	-1.230	1 - 1'	68.94	39.76	3.691
			2 - 2'	24.59		
			3 - 2'	5.45		
	46.54	0 ·478	2 - 1'	89.21	46.30	3.822
			1 - 2'	9.30		

See note on the folloving page.

Collection Czechoslov, Chem. Commun. /Vol. 36/ (1971)

is a certain interrelation between the position of this band and the excitation energy $E(N \rightarrow V_1)$ calculated by the HMO method (see Fig. 6 in the work⁴).

PMR spectra. Similarly as in cases mentioned previously⁴ there exists a parallel change in the values of π -electron densities, q^{SCF} and q^{HMO} , with the values of proton chemical shifts in the corresponding positions of compounds II - IV which can be described by the following empirical correlations (for 10 couples):

 $\begin{aligned} \tau \ (\text{p.p.m.}) \ &= \ 13\cdot 20q^{\text{SCF}} \ - \ 10\cdot 36 \ ; \ \ r \ &= \ 0\cdot 9830 \ , \\ \\ \tau \ (\text{p.p.m.}) \ &= \ 15\cdot 89q^{\text{HMO}} \ - \ 13\cdot 15 \ ; \ r \ &= \ 0\cdot 9212 \ . \end{aligned}$

Similar correlations can be also obtained for all the spin-spin coupling contants $J_{\rm HH}$ and π -bond orders $p^{\rm SCF}$ and $p^{\rm HMO}$, for compounds I - IV (for 22 couples)*:

$$J_{\rm HH}({\rm Hz}) = 6.2p^{\rm SCF} + 2.0; r = 0.9085,$$

$$J_{\rm HH}({\rm Hz}) = 6.3 p^{\rm HMO} + 2.0$$
; $r = 0.9079$.

It is noteworthy that within single groups of interaction constants a quite different situation may be found. So, the changes in the values of ${}^{3}J_{HH}$ (*ortho*) or ${}^{5}J_{HH}$ (*para*) have no analogy in the change of π -bond orders, while the changes in ${}^{4}J_{HH}$ (*meta*) follow closely the above π -electron characteristics, as evident from Fig. 9 (${}^{4}J_{HH}$ (Hz) = = 11.9p + 1.4; for 10 couples r = 0.9808 for SCF data and r = 0.9692 for HMO ones). In all cases the experimental data reported by Brügel²³ were used.

CONCLUSION

The results presented in this paper show that semiempirical HMO and SCF calculations of methylpyridines provide in many respects nearly equivalent data; the similar situation was already found with the cyanoderivatives of pyridines²⁴. The interpretation of chemical reactivity of compounds II-IV is improved by the use of SCF method only in cases where the ions $II \cdot H^+ - IV \cdot H^+$ participate in reactions and

^{*} The π -bond orders were considered also for non-adjacent atom centers. The same approach was already used in the work²⁴.

^a Measured on a Optica Milano CF 4NI Spectrophotometer using 10^{-4} M solutions of the free bases I - IV in water and of the protonated forms in 0.2N sulphuric acid. ^b Transition between the *i*-th and *j*-th MO's (see Table II). ^c Weights of configurations in excited states (included only those higher than 5%).

further in estimating prototropic reactivity of methyl groups on the basis of π -electron densities.

The authors wish to thank Dr E. Janečková for ultraviolet spectra measurements and Mr J. Patočka for technical assistance with calculations (both of Central Laboratory, Institute of Chemical Technology, Prague).

REFERENCES

- Adamov M. N., Tupicyn I. F.: Lietuvos Fizikos Rinkinys, Lietuvos TSR Mokslu, Akad. Lietuvos TSR Aukstosios Mokyklos 3, 227 (1963); Chem. Abstr. 60, 15165 (1964).
- 2. Bonnier J. M., Court J., Gelus M.: Compt. Rend. 263 C, 262 (1966).
- 3. Vernin G., Dou H. J. M., Bouscasse L., Metzger J.: Bull. Soc. Chim. France 1967, 3387.
- 4. Kuthan J., Paleček J., Procházková J., Skála V.: This Journal 33, 3128 (1968).
- 5. Paleček J., Skála V., Kuthan J.: This Journal 34, 1110 (1969).
- 6. Kuthan J., Skála V., Paleček J.: This Journal 34, 2223 (1969).
- 7. White W. N., Lazdins D.: J. Org. Chem. 34, 2756 (1969).
- 8. Pople J. A.: Trans. Faraday Soc. 49, 1375 (1953).
- 9. Pariser R., Parr R. G.: J. Chem. Phys. 21, 466 (1953).
- 10. Pariser R., Parr R. G.: J. Chem. Phys. 21, 767 (1953).
- 11. Lindner P., Martensson O.: Theoret. Chim. Acta 7, 352 (1967).
- 12. Ross B.: Acta Chem. Scand. 21, 2318 (1967).
- 13. Streitwieser A., jr: Molecular Orbital Theory for Organic Chemists. Wiley, New York 1961.
- 14. Hinze J., Jaffé H. H.: J. Am. Chem. Soc. 84, 540 (1962).
- 15. Pancíř J.: Unpublished results.
- 16. Bonnier J. M., Court J., Fay T.: Bull. Soc. Chim. France 1967, 1204.
- 17. Bonnier J. M., Court J., Gelus G.: Compt. Rend. 264 C, 1023 (1967).
- 18. Vernin G., Dou H. J. M.: Compt. Rend. 265 C, 828 (1967).
- 19. Dewar M. J. S., Thompson C. C., jr: J. Am. Chem. Soc. 87, 4414 (1965).
- 20. Zahradník R., Chalvet O.: This Journal 34, 3402 (1969).
- 21. Ikekawa N., Sato Y., Maeda T.: Pharm. Bull. (Tokyo) 2, 205 (1954).
- 22. Clarke K., Rothwell K.: J. Chem. Soc. 1960, 1885.
- 23. Brügel W.: Z. Elektrochem. 66, 159 (1962).
- 24. Skála V., Kuthan J.: This Journal 35, 2378 (1970).

Translated by J. Hetflejš.

1842